The IgLON protein Lachesin is required for the blood-brain barrier in Drosophila.
نویسندگان
چکیده
In the mammalian peripheral nervous system, nerve insulation depends on the integrity of paranodal junctions between axons and their ensheathing glia. Ultrastructurally, these junctions are similar to the septate junctions (SJ) of invertebrates. In Drosophila, SJ are found in epithelia and in the glia that form the blood-brain barrier (BBB). Drosophila NeurexinIV and Gliotactin, two components of SJ, play an important role in nerve ensheathment and insulation. Here, we report that Drosophila Lachesin (Lac), another SJ component, is also required for a functional BBB. In the developing nervous system, Lac is expressed in a dynamic pattern by surface glia and a subset of neurons. Ultrastructural analysis of Lac mutant embryos shows poorly developed SJ in surface glia and epithelia where Lac is expressed. Mutant embryos undergo a phase of hyperactivity, with unpatterned muscle contractions, and subsequently become paralyzed and fail to hatch. We propose that this phenotype reflects a failure in BBB function.
منابع مشابه
In Silico Design and Verification of LAMP-BDNF Chimeric Protein for Presentation of BDNF on the Surface of Exosomes for Drug Delivery Through Blood-Brain Barrier
Background and purpose: The mature form of brain-derived neurotrophic factor (BDNF) binds to BDNF/NT-3 growth factors receptor (Trk-B). This binding leads to activation of Ras–MAPK pathway which is integrated with cell growth and proliferation. The BDNF deficiency is correlated with various diseases and affects aging and miscellaneous. In the present study we aimed to design a chimeric LAMP-BDN...
متن کاملRab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila
In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...
متن کاملP 61: MicroRNA as a Therapeutic Tool to Prevent Blood Brain Barrier Dysfunction in Neuroinflammation
Endothelial cells present in brain are unique and differ from other peripheral tissues in a number of ways, which ensures specific brain endothelial barrier properties. Endothelial dysfunction is the earliest event in the initiation of vascular damage caused by inflammation. Various microRNAs (miRNA) have been discovered in different cellular components of the blood bran barrier (BBB). miRNAs a...
متن کاملEffect of Nesfatin-1 on Permeability of Blood Brain Barrier, Neurological Score and Brain Edema after Traumatic Brain Injury in Male Rats: A Behavioral and Biochemical Study
Background and purpose: Traumatic brain injury (TBI) is one of the most complex diseases of the central nervous system (CNS). Nesfatin is an 82-amino acid effective polypeptide in CNS. In this study, we investigated the role of nesfatin in neuron protection in the process of diffuse concussion in rats and also its effect on the level of matrix metalloproteinase-9. Materials and methods: In thi...
متن کاملCorrection to: In Silico Design and Verification of LAMP-BDNF Chimeric Protein for Presentation of BDNF on the Surface of Exosomes for Drug Delivery Through Blood-Brain Barrier
In the article published in volume 32, issue 215, 2022,http://jmums.mazums.ac.ir/article-1-17695-fa.html the affilifations of Naghi Shahabi Majd, Hosein Ranjbaran, and Shabanali Khodashenas were published incorrectly, which are now corrected.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular neurosciences
دوره 32 1-2 شماره
صفحات -
تاریخ انتشار 2006